Abstract
AbstractThis research investigates the genetic signatures associated with a high risk of suicide in Bipolar disorder (BD) patients through RNA sequencing analysis of lymphoblastoid cell lines (LCLs). By identifying differentially expressed genes (DEGs) and their enrichment in pathways and disease associations, we uncover insights into the molecular mechanisms underlying suicidal behavior. LCL gene expression analysis reveals significant enrichment in pathways related to primary immunodeficiency, ion channel, and cardiovascular defects. Notably, genes such asLCK,KCNN2, andGRIA1emerged as pivotal in these pathways, suggesting their potential roles as biomarkers. Machine learning models trained on a subset of the patients and then tested on other patients demonstrate high accuracy in distinguishing low and high-risk of suicide in BD patients. Moreover, the study explores the genetic overlap between suicide-related genes and several psychiatric disorders. This comprehensive approach enhances our understanding of the complex interplay between genetics and suicidal behavior, laying the groundwork for future prevention strategies.
Publisher
Cold Spring Harbor Laboratory