TAK1 operates at the primary cilium in non-canonical TGFB/BMP signaling to control heart development

Author:

Doganli Canan,Baird Daniel A.ORCID,Ali YeasmeenORCID,Thomsen Oskar KaaberORCID,Audain EnriqueORCID,Jessen Line,Truelsen Pauline Munck,Mogensen Johanne BayORCID,Holm Maria Schrøder,Apolínová KateřinaORCID,Buttò LorenzoORCID,Diamanti Maria,Fialová Jindřiška LeischnerORCID,Wade Emma M.ORCID,Robertson Stephen P.ORCID,Pedersen Lotte BangORCID,Argiro LaurentORCID,Lescroart FabienneORCID,Hitz Marc-PhillipORCID,Christensen Søren TvorupORCID,Larsen Lars AllanORCID

Abstract

SummaryTransforming Growth Factor-Beta-Activated Kinase 1 (TAK1/MAP3K7), along with its upstream regulators TAK1-Binding Protein 2 (TAB2) and the catalytic alpha-subunit of Protein Kinase A (PKA-Cα/PRKACA), has been identified as a pivotal player in regulation of developmental processes. Haploinsufficiency of TAB2 causes Congenital Heart Disease (CHD) and rare variants in PKA-Cα and TAK1 cause cardioacrofacial dysplasia (CAFD), and Frontometaphyseal Dysplasia (FMD) and cardiospondylocarpofacial syndrome (CSCFS), respectively, rare multisystem syndromes, where CHD may appear in the clinical spectrum. We hypothesized that TAK1 plays a significant role in heart development and CHD and addressed this by genetic analysis in CHD patient cohorts and experiments in cell and animal models. Exome sequencing data from 1,471 CHD patients with extracardiac anomalies (syndromic CHD, sCHD), 2,405 patients with nonsyndromic CHD (nsCHD) and 45,082 controls showed increased burden of rareTAB2andTAK1variants in sCHD, but not in nsCHD. Detailed characterization oftak1-/-andtab2-/-zebrafish mutants revealed cardiac defects (dilated atrium, trabeculation defects, tachycardia and reduced contractility) as well as extracardiac developmental anomalies. RNA sequencing oftak1-/-mutant hearts showed downregulation of genes encoding core cardiac transcription factors, sarcomeric proteins and extracellular matrix proteins. Experiments with cell cultures and analysis of zebrafish larvae and gastruloids indicated that TAK1 via TAB2 and PKA-Cα is activated at the primary cilium during cardiomyogenesis and that TAK1 activation at this site is enhanced by cardiomyogenic signaling molecules, including ligands of the TGFB/BMP superfamily. Consistent with these findings, CRISPR/Cas9-mediated editing of TAK1 or administration of small molecule inhibitors targeting TAK1 inhibited ciliary signaling and cardiomyocyte differentiationin vitro, while FMD-causing mutations in TAK1 reduced its ciliary localization. In conclusion, our data establishes a central role for TAK1 and its upstream regulators in cardiac development and syndromic CHD, coordinated via the primary cilium.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3