Automated Identification of Thrombectomy Amenable Vessel Occlusion on Computed Tomography Angiography using Deep Learning

Author:

Han Jung Hoon,Lee Hoyeon,Park Gi-Hoon,Hong Hotak,Kim Dongmin,Kim Jae Guk,Kim Joon-Tae,Sunwoo Leonard,Kim Chi KyungORCID,Ryu Wi-Sun

Abstract

AbstractObjectivesRecent advancements have extended the treatment window for large vessel occlusion in acute ischemic stroke, prompting a shift in the standard of care for patients presenting within 6 to 24 hours. We developed and externally validated an automated deep learning algorithm for detecting thrombectomy amenable vessel occlusion (TAVO) in computed tomography angiography (CTA).MethodsThe algorithm was trained on 2,045 acute ischemic stroke patients who underwent CTA, and validation was conducted using two external datasets comprising 64 (external 1) and 313 (external 2) patients with ischemic stroke. TAVO was defined as occlusion in the intracranial internal carotid artery (ICA), or M1/M2 segment of the middle cerebral artery (MCA). Utilizing U-Net for vessel segmentation and EfficientNetV2 for TAVO prediction, the algorithm’s diagnostic performance was assessed using the area under the receiver operating characteristics curve (AUC), sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV).ResultsThe mean age in the training and validation dataset was 68.7±12.6; 56.3% were men, and 18.0% had TAVO. The algorithm achieved AUC of 0.950 (95% CI, 0.915–0.971) in the internal test. For the external datasets 1 and 2, the AUCs were 0.970 (0.897–0.997) and 0.971 (0.924–0.990), respectively. Notably, the algorithm demonstrated robust sensitivity and specificity (approximately 0.95) for intracranial ICA or M1-MCA occlusion, but a slight reduction in performance for isolated M2-MCA occlusion.ConclusionThis validated algorithm has potential applications in identifying TAVO and could aid less-experienced clinicians, potentially expediting the treatment process for eligible patients.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3