How to Use Gravity to Accelerate Bone Adaptation: A Computational/Experimental Investigation of Exercises for Bone

Author:

Wilzman Andrew R.ORCID,Wong Devin Tomoko,Troy Karen L.ORCID

Abstract

AbstractImpact exercises are known to increase bone mineral density (BMD) and in turn, bone strength and resistance to fracture. The biochemical pathways driving changes in BMD take months to complete, complicating our ability to understand how specific exercises influence the remodeling stimulus received by the bone. The purpose of this study was to compare several measures that have been theoretically linked to bone remodeling stimulus, including accelerations measured by Inertial Measurement Units (IMUs) at the middle of the tibia, ground reaction forces measured by force plate, joint contact forces estimated by musculoskeletal modeling, and tibia strains estimated by finite element modeling informed by high-resolution CT imaging. Twenty healthy adults (10 male: 22.1 +/- 2.2 years; 10 female: 21.3 +/- 1.3 years) participated in a biomechanical investigation of how drop height and landing style (bilateral vs. unilateral) affect the various bone remodeling stimuli. The results showed that while drop height consistently had significant direct relationships with stimulus magnitude, there was little benefit to drop heights greater than 0.4 m. In contrast, switching from a bilateral to a unilateral landing had a large positive effect. The stimuli calculated based on IMU data showed opposite trends compared to force plate and musculoskeletal modeling-based calculations, highlighting the need for caution in how IMUs are placed, and the resulting data interpreted, in the context of bone loading. A post-hoc analysis showed that a linear regression with predictor variables of kinematics, jump height, landing type (unilateral vs. bilateral) and the Ground Reaction Force FFT Integral could explain 79% of the variance in the bone remodeling stimulus that was predicted using much more sophisticated (and labor intensive) modeling. We conclude that higher level biomechanical modeling may not be necessary to understand the magnitude of a bone remodeling stimulus of an exercise.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3