An atlas of protein-protein associations of human tissues prioritizes candidate disease genes

Author:

Laman Trip Diederik S,van Oostrum Marc,Memon Danish,Frommelt Fabian,Baptista Delora,Panneerselvam Kalpana,Bradley Glyn,Licata Luana,Hermjakob Henning,Orchard Sandra,Trynka Gosia,McDonagh Ellen,Fossati Andrea,Aebersold Ruedi,Gstaiger Matthias,Wollscheid Bernd,Beltrao PedroORCID

Abstract

AbstractProteins that interact together participate in the same cellular process and influence the same organismal traits. Despite the progress in mapping protein-protein interactions we lack knowledge of how they differ between tissues. Due to coordinated (post)transcriptional control, protein complex members have highly correlated abundances that are predictive of functional association. Here, we have compiled 7873 proteomic samples measuring protein levels in 11 human tissues and use these to define an atlas with tissue-specific protein associations. This method recapitulates known protein complexes and the larger structural organization of the cell. Interactions of stable protein complexes are well preserved across tissues, while signaling and metabolic interactions show larger variation. Further, we find that less than 18% of differences between tissues are estimated to be due to differences in gene expression while cell-type specific cellular structures, such as synaptic components, represent a significant driver of differences between tissues. We further supported the brain protein association network through co-fractionation experiments in synaptosomes, curation of brain derived pull-down data and AlphaFold2 models. Together these results illustrate how this brain specific protein interaction network can functionally prioritize candidate genes within loci linked to brain disorders.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3