Quantifying uncertainty in RNA velocity

Author:

Zhang Huizi,Bochkina Natalia,Wade Sara

Abstract

AbstractThe concept of RNA velocity has made it possible to extract dynamic information from single-cell RNA sequencing data snapshots, attracting considerable attention and inspiring various extensions. Nonetheless, existing approaches lack uncertainty quantification and many adopt unrealistic assumptions or employ complex black-box models that are difficult to interpret. In this paper, we present a Bayesian hierarchical model to estimate RNA velocity, which leverages a time-dependent transcription rate and non-trivial initial conditions, allowing for well-calibrated uncertainty quantification. The proposed method is validated in a comprehensive simulation study that covers various scenarios, and benchmarked against a widely embraced and commonly recognized approach for RNA velocity on single-cell RNA sequencing data from mouse embryonic stem cells. We demonstrate that our model surpasses this widely used, state-of-the-art method, offering enhanced interpretation of cell velocity and cell orders. Additionally, it supports the estimation of a unified gene-shared latent time, providing a valuable resource for downstream analysis.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3