Author:
Hosoki Koa,Govindhan Annamalai,Knight John M,Sur Sanjiv
Abstract
AbstractBackgroundIL4, IL5, IL13, and IL17-producing CD4 T helper 2 (Th2)-cells and IL17-producing CD4 T helper 17 (Th17)-cells contribute to chronic eosinophilic and neutrophilic airway inflammation in asthma and allergic airway inflammation. Chemokines and their receptors are upregulated in Th2/Th17-mediated inflammation. However, the ability of CXCR1 and CXCR2 modulate Th2 and Th17-cell-mediated allergic lung inflammation has not been reported.MethodsMice sensitized and challenged with cat dander extract (CDE) mount a vigorous Th2-Th17-mediated allergic lung inflammation. Allosteric inhibitor of CXCR1 and CXCR2, ladarixin was orally administered in this model. The ability of ladarixin to modulate allergen-challenge induced recruitment of CXCR1 and CXCR2-expressing Th2 and Th17-cells and allergic lung inflammation were examined.ResultsAllergen challenge in sensitized mice increased mRNA expression levels ofIl4, Il5, Il13, Il6, Il1β, Tgfβ1, Il17, Il23, Gata3,andRorc, and induced allergic lung inflammation characterized by recruitment of CXCR1- and CXCR2-expressing Th2-cells, Th17-cells, neutrophils, and eosinophils. Allosteric inhibition of CXCR1 and CXCR2 vigorously blocked each of these pro-inflammatory effects of allergen challenge. CXCL chemokines induced a CXCR1 and CXCR2-dependent proliferation of IL4, IL5, IL13, and IL17 expressing T-cells.ConclusionAllosteric inhibition of CXCR1 and CXCR2 abrogates blocks recruitment of CXCR1- and CXCR2-expressing Th2-cells, Th17-cells, neutrophils, and eosinophils in this mouse model of allergic lung inflammation. We suggest that the ability of allosteric inhibition of CXCR1 and CXCR2 to abrogate Th2 and Th17-mediated allergic inflammation should be investigated in humans.
Publisher
Cold Spring Harbor Laboratory