A practical approach for estimation of patient-specific intra-aneurysmal flows using variational data assimilation

Author:

Ichimura Tsubasa,Yamada ShigekiORCID,Watanabe Yoshiyuki,Kawano HirotoORCID,Ii SatoshiORCID

Abstract

AbstractPurposeEvaluation of hemodynamics is crucial to predict growth and rupture of cerebral aneurysms. Variational data assimilation (DA) is a powerful tool to characterize patient-specific intra-aneurysmal flows. The DA method inversely estimates a boundary condition in fluid equations using personalized flow data; however, its high computational cost in optimization problems makes its use impractical. This study proposes a practical DA approach to evaluate patient-specific intra-aneurysmal flows.MethodsTo estimate personalized flows, a variational DA method was combined with computational fluid dynamics (CFD) analysis and observed intra-aneurysmal velocity data, and an inverse problem was solved to estimate the spatiotemporal velocity profile at a boundary of the aneurysm neck. To circumvent an ill-posed inverse problem, model order reduction based on a Fourier series expansion was used to describe temporal changes in state variables.ResultsIn numerical validation using synthetic data from a direct CFD analysis, the present DA method achieved excellent agreement with the ground truth, with a velocity mismatch of approximately 18%. In flow estimations for three patient-specific datasets, the velocity mismatch for the present DA method was markedly lower than that for the direct CFD analysis and would mitigate unphysical velocity distributions in flow data from phase contract magnetic resonance imaging.ConclusionBy focusing only on the intra-aneurysmal region, the present DA approach provides an attractive way to evaluate personalized flows in aneurysms with greater reliability than conventional CFD and better efficiency than existing DA approaches.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3