Optimal algorithms for controlling infectious diseases in real time using noisy infection data

Author:

Beregi SandorORCID,Parag Kris V.ORCID

Abstract

AbstractDeciding when to enforce or relax non-pharmaceutical interventions (NPIs) based on real-time outbreak surveillance data is a central challenge in infectious disease epidemiology. Reporting delays and infection under-ascertainment, which characterise practical surveillance data, can misinform decision-making, prompting mistimed NPIs that fail to control spread or permitting deleterious epidemic peaks that overload healthcare capacities. To mitigate these risks, recent studies propose more data-insensitive strategies that trigger NPIs at predetermined times or infection thresholds. However, these strategies often increase NPI durations, amplifying their substantial costs to livelihood and life-quality. We develop a novel model-predictive control algorithm that optimises NPI decisions by jointly minimising their cumulative, future risks and costs over stochastic epidemic projections. Our algorithm is among the earliest to realistically incorporate uncertainties underlying both the generation and surveillance of infections. We find, except under extremely delayed reporting, that our projective approach outperforms data-insensitive strategies and show that earlier decisions strikingly improve real-time control with reduced NPI costs. Moreover, we expose how surveillance quality, disease growth and NPI frequency intrinsically limit our ability to flatten epidemic peaks or dampen endemic oscillations and why this potentially makes Ebola virus more controllable than SARS-CoV-2. Our algorithm provides a general framework for guiding optimal NPI decisions ahead-of-time and identifying the key factors limiting practical epidemic control.

Publisher

Cold Spring Harbor Laboratory

Reference66 articles.

1. Can the COVID-19 epidemic be controlled on the basis of daily test reports?;IEEE Control Systems Letters,2021

2. Systematic review of empirical studies comparing the effectiveness of non-pharmaceutical interventions against COVID-19

3. N. Ferguson , D. Laydon , G. Nedjati Gilani , N. Imai , K. Ainslie , M. Baguelin , S. Bhatia , A. Boonyasiri , Z. Cucunuba Perez , G. Cuomo-Dannenburg , A. Dighe , I. Dorigatti , H. Fu , K. Gaythorpe , W. Green , A. Hamlet , W. Hinsley , L. Okell , S. Van Elsland , H. Thompson , R. Verity , E. Volz , H. Wang , Y. Wang , P. Walker , P. Winskill , C. Whittaker , C. Donnelly , S. Riley , and A. Ghani , “Report 9: Impact of non-pharmaceutical interventions (npis) to reduce COVID19 mortality and healthcare demand,” 2020.

4. J. M. Brauner , S. Mindermann , M. Sharma , D. Johnston , J. Salvatier , T. Gavenčiak , A. B. Stephenson , G. Leech , G. Altman , V. Mikulik , A. J. Norman , J. T. Monrad , T. Besiroglu , H. Ge , M. A. Hartwick , Y. W. Teh , L. Chindelevitch , Y. Gal , and J. Kulveit , “Inferring the effectiveness of government interventions against COVID-19,” Science, vol. 371, Feb. 2021.

5. Effect of the social distancing measures on the spread of COVID-19 in 10 highly infected countries

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3