Author:
Tomou G.,Baltaretu B.,Ghaderi A.,Crawford J. D.
Abstract
ABSTRACTVisual cortex is thought to show both dorsoventral and hemispheric modularity, but it is not known if the same functional modules emerge spontaneously from an unsupervised network analysis, or how they interact when saccades necessitate increased sharing of spatial information. Here, we address these issues by applying graph theory analysis to fMRI data obtained while human participants decided whether an object’s shape or orientation changed, with or without an intervening saccade across the object. BOLD activation from 50 vision-related cortical nodes was used to identify local and global network properties. Modularity analysis revealed three sub-networks during fixation: a bilateral parietofrontal network linking areas implicated in visuospatial processing and two lateralized occipitotemporal networks linking areas implicated in object feature processing. When horizontal saccades required visual comparisons between visual hemifields, functional interconnectivity and information transfer increased, and the two lateralized ventral modules became functionally integrated into a single bilateral sub-network. This network included ‘between module’ connectivity hubs in lateral intraparietal cortex and dorsomedial occipital areas previously implicated in transsaccadic integration. These results provide support for functional modularity in the visual system and show that the hemispheric sub-networks are modified and functionally integrated during saccades.
Publisher
Cold Spring Harbor Laboratory