Collagen I is a critical organizer of scarring and CNS regeneration failure

Author:

Bi Yihui,Duan Wenxiu,Silver Jerry

Abstract

AbstractAlthough axotomized neurons retain the ability to initiate the formation of growth cones and attempt to regenerate after spinal cord injury, the scar area formed as a result of the lesion in most adult mammals contains a variety of reactive cells that elaborate multiple extracellular matrix and enzyme components that are not suitable for regrowth1,2. Newly migrating axons in the vicinity of the scar utilize upregulated LAR family receptor protein tyrosine phosphatases, such as PTPσ, to associate with extracellular chondroitin sulphate proteoglycans (CSPGs), which have been discovered to tightly entrap the regrowing axon tip and transform it into a dystrophic non-growing endball. The scar is comprised of two compartments, one in the lesion penumbra, the glial scar, composed of reactive microglia, astrocytes and OPCs; and the other in the lesion epicenter, the fibrotic scar, which is made up of fibroblasts, pericytes, endothelial cells and inflammatory cells. While the fibrotic scar is known to be strongly inhibitory, even more so than the glial scar, the molecular determinants that curtail axon elongation through the injury core are largely uncharacterized. Here, we show that one sole member of the entire family of collagens, collagen I, creates an especially potent inducer of endball formation and regeneration failure. The inhibitory signaling is mediated by mechanosensitive ion channels and RhoA activation. Staggered systemic administration of two blood-brain barrier permeable-FDA approved drugs, aspirin and pirfenidone, reduced fibroblast incursion into the complete lesion and dramatically decreased collagen I, as well as CSPG deposition which were accompanied by axonal growth and considerable functional recovery. The anatomical substrate for robust axonal regeneration was provided by laminin producing GFAP+and NG2+bridging cells that spanned the wound. Our results reveal a collagen I-mechanotransduction axis that regulates axonal regrowth in spinal cord injury and raise a promising strategy for rapid clinical application.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3