Synaptic pruning facilitates online Bayesian model selection

Author:

Tazawa Ukyo T.ORCID,Isomura TakuyaORCID

Abstract

AbstractIdentifying appropriate structures for generative or world models is essential for both biological organisms and machines. This work shows that synaptic pruning facilitates efficient statistical structure learning. We extend previously established canonical neural networks to derive a synaptic pruning scheme that is formally equivalent to an online Bayesian model selection. The proposed scheme, termed Bayesian synaptic model pruning (BSyMP), utilizes connectivity parameters to switch between the presence (ON) and absence (OFF) of synaptic connections. Mathematical analyses reveal that these parameters converge to zero for uninformative connections, thus providing reliable and efficient model reduction. This enables the identification of a plausible structure for the environmental model, particularly when the environment is characterized by sparse likelihood and transition matrices. Through causal inference and rule learning simulations, we demonstrate that BSyMP achieves model reduction more efficiently than the conventional Bayesian model reduction scheme. These findings indicate that synaptic pruning could be a neuronal substrate underlying structure learning and generalizability in the brain.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3