A machine learning-based prediction of tau load and distribution in Alzheimer’s disease using plasma, MRI and clinical variables

Author:

Karlsson LindaORCID,Vogel Jacob,Arvidsson Ida,Åström Kalle,Strandberg Olof,Seidlitz Jakob,Bethlehem Richard A. I.,Stomrud Erik,Ossenkoppele Rik,Ashton Nicholas J.,Zetterberg Henrik,Blennow Kaj,Palmqvist Sebastian,Smith Ruben,Janelidze Shorena,La Joie RenaudORCID,Rabinovici Gil D.,Pichet Binette Alexa,Mattsson-Carlgren Niklas,Hansson OskarORCID

Abstract

AbstractTau positron emission tomography (PET) is a reliable neuroimaging technique for assessing regional load of tau pathology in the brain, commonly used in Alzheimer’s disease (AD) research and clinical trials. However, its routine clinical use is limited by cost and accessibility barriers. Here we explore using machine learning (ML) models to predict clinically useful tau-PET outcomes from low-cost and non-invasive features, e.g., basic clinical variables, plasma biomarkers, and structural magnetic resonance imaging (MRI). Results demonstrated that models including plasma biomarkers yielded highly accurate predictions of tau-PET burden (best model: R-squared=0.66-0.68), with especially high contribution from plasma P-tau217. In contrast, MRI variables stood out as best predictors (best model: R-squared=0.28-0.42) of asymmetric tau load between the two hemispheres (an example of clinically relevant spatial information). The models showed high generalizability to external test cohorts with data collected at multiple sites. Based on these results, we also propose a proof-of-concept two-step classification workflow, demonstrating how the ML models can be translated to a clinical setting. This study reveals current potential in predicting tau-PET information from scalable cost-effective variables, which could improve diagnosis and prognosis of AD.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3