Fluorescence labeling strategies for the study of ion channel and receptor cell surface expression: A comprehensive toolkit for extracellular labeling of TRPV1

Author:

Mott Taylor M.,Wulffraat Grace C.,Eddins Alex J.,Mehl Ryan A.,Senning Eric N.ORCID

Abstract

AbstractRegulation of ion channel expression on the plasma membrane is a major determinant of neuronal excitability, and identifying the underlying mechanisms of this expression is critical to our understanding of neurons. A critical aspect of measuring changes in ion channel expression is uniquely identifying ion channels located on the cell surface. To accomplish this goal we demonstrate two orthogonal strategies to label extracellular sites of the ion channel TRPV1 that minimally perturb the function of the channel: 1) We use the amber codon suppression technique to introduce a non-canonical amino acid (ncAA) with tetrazine click chemistry compatible with a trans-cyclooctene coupled fluorescent dye. 2) By inserting the circularly permutated HaloTag (cpHaloTag) in an extracellular loop of TRPV1, we incorporate a click-chemistry site for a chloroalkane-linked fluorescent dye of our choosing. Optimization of ncAA insertion sites was accomplished by screening residue positions between the S1 and S2 transmembrane domains with elevated missense variants in the human population, and we identified T468 as a rapid labeling site (∼5 minutes) based on functional as well as biochemical assays in HEK293T/17 cells. After several rounds of adapting the linker lengths and backbone placement of cpHaloTag on the extracellular side of TRPV1, our efforts led to a channel construct that robustly expressed as a fully functional TRPV1exCellHalo fusion with intact wild-type gating properties. The TRPV1exCellHalo construct was used in a single molecule experiment to track TRPV1 on the cell surface and validate studies that show decreased mobility of the channel upon activation. The success of these extracellular label TRPV1 (exCellTRPV1) constructs as tools to track surface expression of the channel will shed significant light on the mechanisms regulating expression and provide a general scheme to introduce similar modifications to other cell surface receptors.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3