Robust and accurate method for measuring tumor volume using optical 3D scanning for nonclinical in vivo efficacy study

Author:

Kobayashi TakumaORCID,Katsumata Mayumi,Nakamura Yoshiki,Terado Yuri,Araki Hideo,Maeda Eiki

Abstract

ABSTRACTIn a nonclinicalin vivoefficacy test for anticancer drugs, immunodeficient mice subcutaneously transplanted with human cancer cells were quantified and evaluated with regard to the manner in which the skin bulges where locally proliferated cancer cells regress after drug administration. A caliper is conventionally used to measure the tumor bulge. However, its volume is an estimated value and results in high variability. Alternatively, cancer cell lines that express genetically encoded marker genes have been used in recent years for optical and nondestructive measurements. However, estimations using calipers exhibit large errors, and biological tissues have low light transparency. This hinders quantitative optical measurements. In addition, variations in measurements owing to subjective and human operations are likely.From the chemistry, manufacturing, and control (CMC) perspective, precise measurement is required to evaluate drug efficacy and quality. Therefore, we aimed to eliminate errors caused by the use of estimated values, subjectivity, and human manipulation by precisely quantifying the volume of the tumor bulge using a 3D scanner.This study demonstrated that optical 3D scanner measurements were accurate, had low variability, and was highly correlated with tumor weight. The tumor bulge was observed to vary to a flattened oval dome shape rather than a semicircle. This caused high variability in measurements of tumor volume. However, the proposed 3D scanner was more sensitive to volumetric regression than the caliper. Additionally, it exhibited drug efficacies with higher resolution than the caliper. Furthermore, the high linearity of the scanner provided more accurate measurements over a wider range of tumor sizes than luminescence imaging. The accurate and sensitive properties of such 3D scanners are also likely to make these exceptionally effective analytical tools for ensuring product equivalency when modifying raw materials or manufacturing processes in the development of cell therapy products.As described above, robust and accurate drug efficacy measurements using nondestructive and noninvasive 3D scanners that require no training and are convenient to operate provide many analytical improvements and advantages. This is likely to play an important role in 1) the efficacy evaluation of cell therapy products that have large variations originating from the raw materials and large differences between manufacturing lots and 2) the quality evaluation, property analysis of the characteristics of variations in the shape of tumor bulges over time, and comparability testing of the products in the CMC section of pharmaceutical companies.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3