Red Light Mediated Photo-Conversion of Silicon Rhodamines to Oxygen Rhodamines for Single-Molecule Microscopy

Author:

Ritz Jacob M.,Khakimzhan Aset,Dalluge Joseph J.,Noiraeux Vincent,Puchner Elias M.ORCID

Abstract

ABSTRACTThe rhodamine motif has been modified in myriad ways to produce probes with specific fluorescent and chemical properties optimal for a variety of microscopy experiments. Recently, far-red emitting silicon rhodamines have become popular in single-molecule localization microscopy (SMLM), since these dyes are membrane-permeable and can be used alongside red fluorophores for two-color imaging. While this has expanded multi-color SMLM imaging capabilities, we demonstrate that silicon rhodamines can create previously unreported photoproducts with significantly blueshifted emissions, which appear as bright single-molecule crosstalk in the red emission channel. We show that this fluorescence is caused by the replacement of the central silicon group with oxygen after 640 nm illumination, turning far-red silicon rhodamines (JFX650, JF669, etc.) into their red oxygen rhodamine counterparts (JFX554, JF571, etc.). While this blueshifted population can cause artifacts in two-color SMLM data, we demonstrate up to 16-fold reduction in crosstalk using oxygen-scavenging systems. We also leverage this far-red photoconversion to demonstrate UV-free photoactivated localization microscopy (PALM) without the need for additives, and with 5-fold higher efficiency than the Cy5 to Cy3 conversion. Finally, we demonstrate multiplexed pseudo two-color PALM in a single emission channel by separating localizations by their photo-activation wavelengths instead of their emission wavelengths.Abstract Figure

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3