Phosphodiesterase 1A physically interacts with YTHDF2 and reinforces the progression of non-small cell lung cancer

Author:

Zhang ChongORCID,Zhang Zuoyan,Wu Yuchen,Cheng Jing,Luo Kaizhi,Li Zhidi,Zhang Manman,Wang Jian,Li Yangling

Abstract

AbstractNon-small cell lung cancer (NSCLC) is the most common subtype of lung cancer, and the prognosis is poor due to distant metastasis and drug resistance. Thus, there is an urgent need to discover novel therapeutic targets and strategies to overcome cisplatin resistance and metastasis. A series of in vitro and in vivo phenotype experiments were performed to investigate the role of PDE1A in NSCLC. The RIP assay, mRNA stability assay and LC- MS/MS were performed to investigate the molecular mechanisms of PDE1A in NSCLC progression. We demonstrated that phosphodiesterase 1A (PDE1A) promoted metastasis and EMT progression of NSCLC. In addition, NSCLC cells overexpressing PDE1A promoted angiogenesis by regulating exosome release. IL-6/JAK/STAT3 signaling pathway was highly enriched in PDE1A- coexpresssed genes, and PDE1A promoted NSCLC metastasis by activating the STAT3 pathway. GO enrichment analysis of PDE1A-interacting genes showed that PDE1A might interact with YTHDF2 and participate in m6A- containing RNA binding. The binding between PDE1A and YTHDF2 was verified, and PDE1A regulated the STAT3 pathway by interacting with YTHDF2. The mechanism of YTHDF2/PDE1A complex in regulating STAT3 pathway was predicted by overlapping YTHDF2-interacting-RNAs, and genes coexpressed with YTHDF2 and STAT3. The interactions between YTHDF2 and target mRNAs were predicted, and there were three predicted targets of YTHDF2 with high scores: NRF2, SOCS2, and MET. Indeed, PDE1A interacted with YTHDF2, destabilized SOCS2, and activated STAT3 pathway. Moreover, PDE1A suppression sensitized anti-NSCLC activity of cisplatin via regulating NRF2 and MET. This work not only uncovers a novel PDE1A/YTHDF2/STAT3 pathway in NSCLC progression but also provides therapeutic strategies for treating NSCLC patients with metastasis or cisplatin- resistance.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3