Single particle cryo-electron microscopy with an enhanced 200 kV cryo-TEM configuration achieves near-atomic resolution

Author:

Jia Lijia,Ruben Eliza A.,Suarez Humberto J.,Olsen Shaun K.ORCID,Wasmuth Elizabeth V.ORCID

Abstract

AbstractSingle particle cryogenic electron microscopy (cryo-EM) as a structural biology methodology has become increasingly attractive and accessible to investigators in both academia and industry as this ever-advancing technology enables successful structural determination of a wide range of protein and nucleic acid targets. Although data for many high resolution cryo-EM structures are still obtained using a 300 kV cryogenic transmission electron microscope (cryo-TEM), a modern 200 kV cryo-TEM equipped with an advanced direct electron detector and energy filter is a cost-effective choice for most single particle applications, routinely achieving sub 3 angstrom (Å) resolution. Here, we systematically evaluate performance of one such high-end configuration - a 200 kV Glacios microscope coupled with a Falcon 4 direct electron detector and Selectris energy filter (Glacios-F4-S). First, we evaluated data quality on the standard benchmarking sample, rabbit muscle aldolase, using three of the most frequently used cryo-EM data collection software: SerialEM, Leginon and EPU, and found that – despite sample heterogeneity – all final reconstructions yield same overall resolutions of 2.6 Å and map quality when using either of the three software. Furthermore, comparison between Glacios-F4-S and a 300 kV cryo-TEM (Titan Krios with Falcon 4) revealed nominal resolution differences in overall reconstructions of a reconstituted human nucleosome core particle, achieving 2.8 and 2.5 Å, respectively. Finally, we performed comparative data analysis on the human RAD51 paralog complex, BCDX2, a four-protein complex of approximately 150 kilodaltons, and found that a small dataset (≤1,000 micrographs) was sufficient to generate a 3.3 Å reconstruction, with sufficient detail to resolve co-bound ligands, AMP-PNP and Mg+2. In summary, this study provides evidence that the Glacios-F4-S operates equally well with all standard data collection software, and is sufficient to obtain high resolution structural information of novel macromolecular complexes, readily acquiring single particle data rivaling that of 300 kV cryo-TEMs.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3