Genesis: A modular protein language modelling approach to immunogenicity prediction

Author:

O’Brien HughORCID,Salm MaxORCID,Morton Laura TORCID,Szukszto MaciejORCID,O’Farrell FelixORCID,Boulton Charlotte,King Laurence,Bola Supreet Kaur,Becker Pablo,Craig Andrew,Nielsen MortenORCID,Samuels YardenaORCID,Swanton CharlesORCID,Mansour Marc RORCID,Hadrup Sine RekerORCID,Quezada Sergio AORCID

Abstract

AbstractNeoantigen immunogenicity prediction is a highly challenging problem in the development of personalised medicines. Low reactivity rates in called neoantigens result in a difficult prediction scenario with limited training datasets. Here we describe Genesis, a modular protein language modelling approach to immunogenicity prediction for CD8+ reactive epitopes. Genesis comprises of a pMHC encoding module trained on three pMHC prediction tasks, an optional TCR encoding module and a set of context specific immunogenicity prediction head modules. Compared with state-of-the-art models for each task, Genesis’ encoding module performs comparably or better on pMHC binding affinity, eluted ligand prediction and stability tasks. Genesis outperforms all compared models on pMHC immunogenicity prediction (Area under the receiver operating characteristic curve=0.619, average precision: 0.514), with a 7% increase in average precision compared to the next best model. Genesis shows further improved performance on immunogenicity prediction with the integration of TCR context information. Genesis performance is further analysed for interpretability, which locates areas of weakness found across existing immunogenicity models and highlight possible biases in public datasets.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3