Transient interdomain interactions modulate the monomeric structural ensemble and oligomerization landscape of Huntingtin Exon 1

Author:

Mohanty Priyesh,Phan Tien Minh,Mittal JeetainORCID

Abstract

AbstractPolyglutamine expansion (≥ 36 residues) within the N-terminal exon-1 of Huntingtin (Httex1) leads to Huntington’s disease, a neurogenerative condition marked by the presence of intranuclear Htt inclusions. Notably, the polyglutamine tract in Httex1 is flanked by an N-terminal coiled-coil domain - N17 (17 amino acids), which undergoes self-association to promote the formation of soluble Httex1 oligomers and brings the aggregation-prone polyQ tracts in close spatial proximity. However, the mechanisms underlying the subsequent conversion of soluble oligomers into insoluble β-rich aggregates with increasing polyQ length, remain unclear. Current knowledge suggests that expansion of the polyQ tract increases its helicity, and this favors its oligomerization and aggregation. In addition, studies utilizing conformation-specific antibodies and a stable coiled-coil heterotetrametric system fused to polyQ indicate that domain “cross-talk” (i.e., interdomain interactions) may be necessary to efficiently promote the emergence of toxic conformations (in monomers and oligomers) and fibrillar aggregation. Here, we performed extensive atomistic molecular dynamics (MD) simulations (aggregate time ∼ 0.7 ms) of N17-polyQ fragments to uncover the interplay between structural transformation and domain “cross-talk” on the monomeric structural ensemble and oligomerization landscape of Httex1. Our simulation ensembles of N17-polyQ monomers validated against13C NMR chemical shifts indicated that in addition to elevated α-helicity, polyQ expansion also favors transient, interdomain (N17-polyQ) interactions which result in the emergence of β-conformations. Further, interdomain interactions decreased the overall stability of N17-mediated dimers by counteracting the stabilizing effect of increased α-helicity and promoted a heterogenous oligomerization landscape on the sub-microsecond timescale. Overall, our study uncovers the significance of domain “cross-talk” in modulating the monomeric conformational ensemble and oligomerization landscape of Httex1 to favor the formation of amyloid aggregates.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3