Abstract
AbstractPlasma membrane stains are one of the most important organelle markers for unambiguous assignments of individual cells and monitoring membrane morphology and dynamics. The state-of-the-art PM stains are bright, specific, fluorogenic, and compatible with super-resolution imaging. However, when recording membrane dynamics, particularly under light-intensive microscopes, PM is prone to photodynamic damages due to its phospholipid bilayer nature. Here we developed PK Mem dyes tailored for time-lapse fluorescence imaging. By integrating triplet-state quenchers into the MemBright dyes featuring cyanine chromophores and amphiphilic zwitterion anchors, PK Mem dyes exhibited a three-fold reduction in phototoxicity and a more than four-fold improvement in photostability in imaging experiments. These dyes enable 2D and 3D imaging of live or fixed cancer cell lines and a wide range of primary cells, at the same time pair well with various fluorescent markers. PK Mem dyes can be applied to neuronal imaging in brain slices andin vivotwo-photon imaging. The gentle nature of PK Mem palette enables ultralong-term recording of cell migration and cardiomyocyte beating. Notably, PK Mem dyes are optically compatible with STED/SIM imaging, which can handily upgrade the routine of time-lapse neuronal imaging, such as growth cone tracking and mitochondrial transportations, into nanoscopic resolutions.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献