On the completeness of existing RNA fragment structures

Author:

Hong Xu,Zhan Jian,Zhou Yaoqi

Abstract

AbstractSuccess in protein structure prediction by the deep learning method AlphaFold 2 naturally gives arise the question if we can do the same for RNA structure prediction. One reason for the success in protein structure prediction is that the structural space of proteins at the fragment level has been nearly complete for many years. Here, we examined the completeness of RNA fragment structural space at dimeric, trimeric, tetrameric, and pentameric levels. We showed that the RNA structural space is not even complete at the di-nucleotide level, whereas the exponential increase of new structural fragments is observed at tetrameric and pentameric levels. Moreover, the number of backbone fragments found in RNA (2510) is far smaller than the number of backbone fragments found in proteins (6652). This further suggests that a structural space currently observed in RNA is far from complete, considering that the RNA backbone (6 torsion angles) has more degrees of freedom than the protein backbone (3 torsion angles with one nearly fixed). In addition, we found that the three-atom representation (one backbone atom C4’ and two sidechain atoms C1’ and N1) has the lowest number of structural fragments, suggesting it as the most “stable” structural frame for building up the entire RNA structure.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3