Glutamate (E299) is a key residue in the evolutionarily divergence of the SAM-dependent methyltransferases DnrK and RdmB in anthracycline biosynthesis

Author:

Sang Moli,Yang Qingyu,Guo Jiawei,Feng Peiyuan,Ma Wencheng,Li Shengying,Zhang Wei

Abstract

AbstractA novel sub-class ofS-adenosyl-L-methionine (SAM)-dependent methyltransferases catalyze atypical chemical transformations in the biosynthesis of anthracyclines, which include antineoplastic compounds. Intriguingly, the closely related methyltransferases DnrK and RdmB have markedly divergent functions. We investigated their catalytic activities and discovered a previously unknown 10-hydroxylation activity for DnrK and 4-O-methylation activity for RdmB. Isotope-labeling demonstrated that the 10-hydroxy group introduced by DnrK is derived from water molecules while RdmB utilizes O2. A single residue, E299, was the key modulator in the differing catalytic functions of DnrK and RdmB, especially the decarboxylative oxidation activity. Furthermore, the multifunctionality of DnrK was demonstrated to be SAM-tunable and concerted, whereas RdmB activity was cofactor-dependent and stepwise. Our findings expand the versatility and importance of methyltransferases and should aid studies to enrich the structural diversity and bioactivities of anthracyclines.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3