Abstract
AbstractThe mammalian heart is formed from multiple mesoderm-derived cell lineages. However, it remains largely unknown when and how the specification of mesoderm towards cardiac lineages is determined. Here, we systematically depict the transcriptional trajectories toward cardiomyocyte in early mouse embryo, and characterize the epigenetic landscapes underlying the early mesodermal lineage specification by single-cell multi-omics analyses. The analyses also reveal distinct core regulatory networks (CRN) in controlling specification of mesodermal lineages. We further demonstrate the essential role HAND1 and FOXF1 in driving the earliest cardiac progenitors specification. These key transcription factors occupy at distinct enhancers, but function synergistically and hierarchically to regulate the expression of cardiac-specific genes. In addition, HAND1 is required for exiting from the nascent mesoderm program, while FOXF1 is essential for driving cardiac differentiation during MJH specification. Our findings establish transcriptional and epigenetic determinants specifying the early cardiac lineage, providing insights for the investigation of congenital heart defects.
Publisher
Cold Spring Harbor Laboratory