A novel induced pluripotent stem cell model of Schwann cell differentiation revealsNF2- related gene regulatory networks of the extracellular matrix

Author:

Lazaro Olivia,Li Sihong,Carter William,Awosika Oluwamayowa,Robertson Sylvia,Hickey Brooke E.,Angus Steven P.,House Austin,Clapp Wade D.,Qadir Abdul S.,Johnson Travis S.,Rhodes Steven D.

Abstract

AbstractSchwann cells are vital to development and maintenance of the peripheral nervous system and their dysfunction has been implicated in a range of neurological and neoplastic disorders, includingNF2-related schwannomatosis. We developed a novel human induced pluripotent stem cell (hiPSC) model to study Schwann cell differentiation in health and disease. We performed transcriptomic, immunofluorescence, and morphological analysis of hiPSC derived Schwann cell precursors (SPCs) and terminally differentiated Schwann cells (SCs) representing distinct stages of development. To validate our findings, we performed integrated, cross-species analyses across multiple external datasets at bulk and single cell resolution. Our hiPSC model of Schwann cell development shared overlapping gene expression signatures with human amniotic mesenchymal stem cell (hAMSCs) derived SCs andin vivomouse models, but also revealed unique features that may reflect species-specific aspects of Schwann cell biology. Moreover, we identified gene co-expression modules that are dynamically regulated during hiPSC to SC differentiation associated with ear and neural development, cell fate determination, theNF2gene, and extracellular matrix (ECM) organization. By cross-referencing results between multiple datasets, we identified new genes potentially associated withNF2expression. Our hiPSC model further provides a tractable platform for studying Schwann cell development in the context of human disease.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3