Biofilm rupture by laser-induced stress waves increases with loading amplitude, independent of location

Author:

Kearns Kaitlyn L.,Boyd James D.,Grady Martha E.ORCID

Abstract

AbstractIntegral to the production of safe and biocompatible medical devices is to determine the interfacial properties that affect or control strong biofilm adhesion. The laser spallation technique has recently emerged as an advantageous method to quantify biofilm adhesion across candidate biomedical surfaces. However, there is a possibility that membrane tension is a factor that contributes to the stress required to separate biofilm and substrate. In that case, the stress amplitude, controlled by laser fluence, that initiates biofilm rupture would vary systematically with location on the biofilm. Film rupture, also known as spallation, occurs when film material is ejected during stress wave loading. In order to determine effects of membrane tension, we present a protocol that measures spall size with increasing laser fluence (variable fluence) and with respect to distance from the biofilm centroid (iso-fluence). Streptococcus mutans biofilms on titanium substrates serves as our model system. A total of 185 biofilm loading locations are analyzed in this study. We demonstrate that biofilm spall size increases monotonically with laser fluence and apply our procedure to failure of non-biological films. In iso-fluence experiments, no correlation is found between biofilm spall size and loading location, thus providing evidence that membrane tension does not play a dominant role in biofilm adhesion measurements. We recommend our procedure as a straightforward method to determine membrane effects in the measurement of adhesion of biological films on substrate surfaces via the laser spallation technique.Graphical Abstract

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Effect of Host Surface Factors on Biocompatible Adhesion Index;Challenges in Mechanics of Time Dependent Materials, Mechanics of Biological Systems and Materials & Micro-and Nanomechanics, Volume 2;2021-12-14

2. Biofilm and Cell Adhesion Strength on Dental Implant Surfaces via the Laser Spallation Technique;2019-12-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3