Positional dynamics and glycosomal recruitment of developmental regulators during trypanosome differentiation

Author:

Szöőr Balázs,Simon Dorina V.,Rojas Federico,Young Julie,Robinson Derrick R.,Krüger Timothy,Engstler Markus,Matthews Keith R.

Abstract

AbstractGlycosomes are peroxisome-related organelles that compartmentalise the glycolytic enzymes in kinetoplastid parasites. These organelles are developmentally regulated in their number and composition, allowing metabolic adaptation to the parasite’s needs in the blood of mammalian hosts or within their arthropod vector. A protein phosphatase cascade regulates differentiation between parasite developmental forms, comprising a tyrosine phosphatase, TbPTP1, that dephosphorylates and inhibits a serine threonine phosphatase TbPIP39 that promotes differentiation. When TbPTP1 is inactivated, TbPIP39 is activated and during differentiation becomes located in glycosomes. Here we have tracked TbPIP39 recruitment to glycosomes during differentiation from bloodstream stumpy forms to procyclic forms. Detailed microscopy and live cell imaging during the synchronous transition between life cycle stages revealed that in stumpy forms, TbPIP39 is located at a periflagellar pocket site closely associated with TbVAP, that defines the flagellar pocket endoplasmic reticulum. TbPTP1 is also located at the same site in stumpy forms, as is REG9.1, a regulator of stumpy-enriched mRNAs. This site provides a molecular node for the interaction between TbPTP1 and TbPIP39. Within 30 minutes of the initiation of differentiation TbPIP39 relocates to glycosomes whereas TbPTP1 disperses to the cytosol. Overall, the study identifies a ‘stumpy regulatory nexus’ (STuRN) that co-ordinates the molecular components of life cycle signalling and glycosomal development during transmission ofTrypanosoma brucei.ImportanceAfrican trypanosomes are parasites of sub-Saharan Africa responsible for both human and animal disease. The parasites are transmitted by tsetse flies and completion of their life cycle involves progression through several development steps. The initiation of differentiation between blood and tsetse forms is signalled by a phosphatase cascade, ultimately trafficked into peroxisome-related organelles called glycosomes that are unique to this group of organisms. Glycosomes undergo substantial remodelling of their composition and function during the differentiation step but how this is regulated is not understood. Here we identify a cytological site where the signalling molecules controlling differentiation converge before the dispersal of one of them into glycosomes. This coincides with a specialised ER site that may contribute to glycosome developmental biogenesis or regeneration. In combination, the study provides the first insight into the spatial co-ordination of signalling pathway components in trypanosomes as they undergo cell-type differentiation.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3