Motor cortical inactivation reduces the gain of kinematic primitives in mice performing a hold-still center-out reach task

Author:

Bollu TejapratapORCID,Whitehead Samuel C.,Prasad Nikil,Walker Jackson,Shyamkumar Nitin,Subramaniam Raghav,Kardon Brian,Cohen Itai,Goldberg Jesse HeymannORCID

Abstract

SUMMARYMotor sequences are constructed from primitives, hypothesized building blocks of movement, but mechanisms of primitive generation remain unclear. Using automated homecage training and a novel forelimb sensor, we trained freely-moving mice to initiate forelimb sequences with clearly resolved submillimeter-scale micromovements followed by millimeter-scale reaches to learned spatial targets. Hundreds of thousands of trajectories were decomposed into millions of kinematic primitives, while closed-loop photoinhibition was used to test roles of motor cortical areas. Inactivation of contralateral motor cortex reduced primitive peak speed but, surprisingly, did not substantially affect primitive direction, initiation, termination, or complexity, resulting in isomorphic, spatially contracted trajectories that undershot targets. Our findings demonstrate separable loss of a single kinematic parameter, speed, and identify conditions where loss of cortical drive reduces the gain of motor primitives but does not affect their generation, timing or direction. The combination of high precision forelimb sensing with automated training and neural manipulation provides a system for studying how motor sequences are constructed from elemental building blocks.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3