Sensitivity and robustness of comorbidity network analysis

Author:

Brunson Jason CoryORCID,Agresta Thomas P.,Laubenbacher Reinhard C.

Abstract

1Summary and KeywordsBackgroundComorbidity network analysis (CNA) is an increasingly popular approach in systems medicine, in which mathematical graphs encode epidemiological correlations (links) between diseases (nodes) inferred from their occurrence in an underlying patient population. A variety of methods have been used to infer properties of the constituent diseases or underlying populations from the network structure, but few have been validated or reproduced.ObjectivesTo test the robustness and sensitivity of several common CNA techniques to the source of population health data and the method of link determination.MethodsWe obtained six sources of aggregated disease co-occurrence data, coded using varied ontologies, most of which were provided by the authors of CNAs. We constructed families of comorbidity networks from these data sets, in which links were determined using a range of statistical thresholds and measures of association. We calculated degree distributions, single-value statistics, and centrality rankings for these networks and evaluated their sensitivity to the source of data and link determination parameters. From two open-access sources of patient-level data, we constructed comorbidity networks using several multivariate models in addition to comparable pairwise models and evaluated differences between correlation estimates and network structure.ResultsGlobal network statistics vary widely depending on the underlying population. Much of this variation is due to network density, which for our six data sets ranged over three orders of magnitude. The statistical threshold for link determination also had strong effects on global statistics, though at any fixed threshold the same patterns distinguished our six populations. The association measure used to quantify comorbid relations had smaller but discernible effects on global structure. Co-occurrence rates estimated using multivariate models were increasingly negative-shifted as models accounted for more effects. However, only associations between the most prevalent disorders were consistent from model to model. Centrality rankings were likewise similar when based on the same dataset using different constructions; but they were difficult to compare, and very different when comparable, between data sets, especially those using different ontologies. The most central disease codes were particular to the underlying populations and were often broad categories, injuries, or non-specific symptoms.ConclusionsCNAs can improve robustness and comparability by accounting for known limitations. In particular, we urge comorbidity network analysts (a) to include, where permissible, disaggregated disease occurrence data to allow more targeted reproduction and comparison of results; (b) to report differences in results obtained using different association measures, including both one of relative risk and one of correlation; (c) when identifying centrally located disorders, to carefully decide the most suitable ontology for this purpose; and, (d) when relevant to the interpretation of results, to compare them to those obtained using a multivariate model.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3