Rearing environment persistently modulates the phenotype of mice

Author:

Jaric IvanaORCID,Voelkl BernhardORCID,Clerc MelanieORCID,Schmid Marc W.,Novak Janja,Rosso MariannaORCID,Rufener Reto,von Kortzfleisch Vanessa TabeaORCID,Richter S. HeleneORCID,Buettner Manuela,Bleich André,Amrein IrmgardORCID,Wolfer David P.ORCID,Touma Chadi,Sunagawa ShinichiORCID,Würbel HannoORCID

Abstract

AbstractThe phenotype of an organism results from its genotype and the influence of the environment throughout development. Even when using animals of the same genotype, independent studies may test animals of different phenotypes, resulting in poor replicability due to genotype-by-environment interactions 1–4. Thus, genetically defined strains of mice may respond differently to experimental treatments depending on their rearing environment 5. However, the extent of such phenotypic plasticity and its implications for the replicability of research findings have remained unknown. Here, we examined the extent to which common environmental differences between rearing facilities modulate the phenotype of genetically homogeneous (inbred) mice. We conducted a comprehensive multi-center study, where inbred mice from the same breeding stock were reared in five different facilities throughout early life and adolescence, before being transported to a single test laboratory. We found persistent effects of rearing facility on the composition and heterogeneity of the gut microbial community. These effects were paralleled by persistent differences in body weight and in the behavioural phenotype of the mice. Furthermore, we show that common variation among rearing facilities is strong enough to influence epigenetic patterns in neurons at the level of chromatin organization. We detected changes in chromatin organization in the regulatory regions of genes involved in nucleosome assembly, neuronal differentiation, synaptic plasticity and regulation of behavior. Our findings demonstrate that common environmental differences between rearing facilities may produce facility-specific phenotypes, from the molecular to the behavioural level. We expect our findings to stimulate further research into the mechanisms and drivers of these epigenetic changes mediated by the laboratory environment. Furthermore, they highlight an important limitation of inferences from single-laboratory studies and a need to account for the animals’ environmental background in study design to produce robust and replicable findings.

Publisher

Cold Spring Harbor Laboratory

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3