Next-generation intranasal Covid-19 vaccine: a polymersome-based protein subunit formulation that provides robust protection against multiple variants of concern and early reduction in viral load of the upper airway in the golden Syrian hamster model

Author:

Lam Jian Hang,Shivhare Devendra,Chia Teck Wan,Chew Suet Li,Sinsinbar Gaurav,Aw Ting Yan,Wong Siamy,Venkatraman Shrinivas,Lim Francesca Wei Inng,Vandepapeliere Pierre,Nallani Madhavan

Abstract

AbstractSevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the etiological agent of coronavirus disease 2019 (Covid-19), an ongoing global public health emergency. Despite the availability of safe and efficacious vaccines, achieving herd immunity remains a challenge due in part to rapid viral evolution. Multiple variants of concern (VOCs) have emerged, the latest being the heavily mutated Omicron, which exhibits the highest resistance to neutralizing antibodies from past vaccination or infection. Currently approved vaccines generate robust systemic immunity, yet poor immunity at the respiratory tract. We have demonstrated that a polymersome-based protein subunit vaccine with wild type (WT) spike protein and CpG adjuvant induces robust systemic immunity (humoral and T cell responses) in mice. Both antigen and adjuvant are encapsulated in artificial cell membrane (ACM) polymersomes – synthetic, nanoscale vesicles that substantially enhance the immune response through efficient delivery to dendritic cells. In the present study, we have formulated a vaccine candidate with the spike protein from Beta variant and assessed its immunogenicity in golden Syrian hamsters. Two doses of ACM-Beta spike vaccine administered via intramuscular (IM) injection evoke modest serum neutralizing titers that are equally efficacious towards WT and Beta viruses. In contrast, the ACM-WT spike vaccine induces a predominantly WT-specific serum neutralizing response with pronounced reduction in potency towards the Beta variant. Remarkably, immunogenicity of the ACM-Beta spike vaccine is greatly enhanced through intranasal (IN) administration. Following IN challenge with the Beta variant, IM-immunized hamsters are fully protected from disease but not infection, displaying similar peak viral RNA loads in oral swabs as non-vaccinated controls. In contrast, hamsters IN vaccinated with ACM-Beta spike vaccine are protected from disease and infection, exhibiting a ∼100-fold drop in total and subgenomic RNA load as early as day 2 post challenge. We further demonstrate that nasal washes from IN-but not IM-immunized animals possess virus neutralizing activity that is broadly efficacious towards Delta and Omicron variants. Altogether, our results show IN administration of ACM-Beta spike vaccine to evoke systemic and mucosal antibodies that cross-neutralize multiple SARS-CoV-2 VOCs. Our work supports IN administration of ACM-Beta spike vaccine for a next-generation vaccination strategy that not only protects against disease but also an infection of the respiratory tract, thus potentially preventing asymptomatic transmission.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3