Ultrahigh-throughput directed evolution of a metal-free α/β-hydrolase with a Cys-His-Asp triad into an efficient phosphotriesterase

Author:

Schnettler Fernández DavidORCID,Klein Oskar JamesORCID,Kaminski Tomasz S.ORCID,Colin Pierre-YvesORCID,Hollfelder FlorianORCID

Abstract

ABSTRACTThe recent massive release of new, man-made substances into the environment requires bioremediation, but a very limited number of enzymes evolved in response are available. When environments have not encountered the potentially hazardous materials in their evolutionary history, existing enzymes have to be repurposed. The recruitment of accidental, typically low-level promiscuous activities provides a head start that, after gene duplication, can adapt and provide a selectable advantage. This evolutionary scenario raises the question whether it is possible to adaptively improve the low-level activity of enzymes recruited from non- (or only recently) contaminated environments quickly to the level of evolved bioremediators.Here we address the evolution of phosphotriesterases (enzymes for hydrolysis of organophosphate pesticides or chemical warfare agents) in such a scenario: In a previous functional metagenomics screening we had identified a promiscuous phosphotriesterase activity of the α/β-hydrolase P91, with an unexpected Cys-His-Asp catalytic triad as the active site motif. We now probe evolvability of P91 using ultrahigh-throughput screening in microfluidic droplets, and test for the first time whether the unique catalytic motif of a cysteine-containing triad can adapt to achieve rates that rival existing phosphotriesterases. These mechanistically distinct enzymes achieve their high rates based on catalysis involving a metal-ion cofactor. A focussed, combinatorial library of P91 (> 105 members) was screened on-chip in microfluidic droplets by quantification of the reaction product, fluorescein. Within only two rounds of evolution P91’s phosphotriesterase activity was increased ≈ 400-fold to a kcat/KM of ≈ 106 M−1s−1, matching the catalytic efficiencies of naturally evolved metal-dependent phosphotriesterases. In contrast to its homologue acetylcholinesterase that suffers suicide inhibition, P91 shows fast de-phosphorylation rates and is rate-limited by the formation of the covalent adduct rather than by its hydrolysis. Our analysis highlights how the combination of focussed, combinatorial libraries with the ultrahigh throughput of droplet microfluidics can be leveraged to identify and enhance mechanistic strategies that have not reached high efficiency in Nature, resulting in alternative reagents with a novel catalytic machinery.GRAPHICAL ABSTRACT

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3