Automatic Generation of Interactive Multidimensional Phase Portraits

Author:

Ogunsan Oluwateniayo O.,Lobo DanielORCID

Abstract

AbstractMathematical models formally and precisely represent biological mechanisms with complex dynamics. To understand the possible behaviors of such systems, phase portrait diagrams can be used to visualize their overall global dynamics across a domain. However, producing these phase portrait diagrams is a laborious process reserved to mathematical experts. Here, we developed a computational methodology to automatically generate phase portrait diagrams to study biological dynamical systems based on ordinary differential equations. The method only needs as input the variables and equations describing a multidimensional biological system and it automatically outputs for each pair of dependent variables a complete phase portrait diagram, including the critical points and their stability, the nullclines of the system, and a vector space of the trajectories. Crucially, the portraits generated are interactive, and the user can move the visualized planar slice, change parameters with sliders, and add trajectories in the phase and time domains, after which the diagrams are updated in real time. The method is available as a user-friendly graphical interface or can be accessed programmatically with aMathematicapackage. The generated portraits and particular views can be saved as computable notebooks preserving the interactive functionality, an approach that can be adopted for reproducible science and interactive pedagogical materials. The method, code, and examples are freely-available athttps://lobolab.umbc.edu/autoportrait.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Effect of hunting cooperation and fear in a food chain model with intraspecific competition;Communications in Mathematical Biology and Neuroscience;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3