Functional diversity and evolution of the Drosophila sperm proteome

Author:

Garlovsky Martin D.ORCID,Sandler Jessica,Karr Timothy L.ORCID

Abstract

Given the central role fertilization plays in the health and fitness of sexually reproducing organisms and the well-known evolutionary consequences of sexual selection and sperm competition, knowledge gained by a deeper understanding of sperm (and associated reproductive tissues) proteomes has proven critical to the field’s advancement. Due to their extraordinary complexity, proteome depth-of-coverage is dependent on advancements in technology and related bioinformatics, both of which have made significant advancements in the decade since the last Drosophila sperm proteome was published. Here we provide an updated version of the Drosophila melanogaster sperm proteome (DmSP3) using improved separation and detection methods and an updated genome annotation. We identified 2563 proteins, with label-free quantitation (LFQ) for 2125 proteins. Combined with previous versions of the sperm proteome, the DmSP3 contains a total of 3176 proteins. The top 20 most abundant proteins contained the structural elements α- and β-tubulins and sperm leucyl-aminopeptidases (S-Laps). Both gene content and protein abundance were significantly reduced on the X chromosome, a finding consistent with prior genomic studies of the X chromosome gene content and evolution. We identified 9 of the 16 Y-linked proteins, including known testis-specific male fertility factors. LFQ measured significant levels for 75/83 ribosomal proteins (RPs) we identified, including a number of core constituents. The role of this unique subset of RPs in sperm is unknown. Surprisingly, our expanded sperm proteome also identified 122 seminal fluid proteins (Sfps), proteins found predominantly in the accessory glands. The possibility of tissue contamination from seminal vesicle or other reproductive tissues was addressed using concentrated salt and detergent treatments. Salt treatment had little effect on sperm proteome composition suggesting only minor contamination during sperm isolation while a significant fraction of Sfps remained associated with sperm following detergent treatment suggesting Sfps may arise within, and have additional functions, in sperm per se.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3