Local Subspace Pruning (LSP) for Multichannel Data Denoising

Author:

de Cheveigné AlainORCID

Abstract

AbstractThis paper proposes a simple algorithm to remove noise and artifact from multichannel data. Data are processed trial by trial: for each trial the covariance matrix of the trial is diagonalized together with that of the full data to reveal the subspace that is – locally – most eccentric relative to other trials. That subspace is then projected out from the data of that trial. This algorithm addresses a fundamental limitation of standard linear analysis methods (e.g. ICA) that assume that brain and artifact are linearly separable within the data. That assumption fails if there are more sources, including noise and brain sources, than data channels. The algorithm captitalizes on the fact that, if enough of those sources are temporally sparse, linear separation may succeed locally in time. The paper explains the rationale, describes the algorithm, and evaluates the outcome using synthetic and real brain data.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3