Contribution of deep soil layers to the transpiration of a temperate deciduous forest: quantification and implications for the modelling of productivity

Author:

Maysonnave Jean,Delpierre NicolasORCID,François ChristopheORCID,Jourdan MarionORCID,Cornut IvanORCID,Bazot StéphaneORCID,Vincent GaёlleORCID,Morfin Alexandre,Berveiller DanielORCID

Abstract

AbstractClimate change is imposing drier atmospheric and edaphic conditions on temperate forests. Here, we investigated how deep soil (down to 300 cm) water extraction contributed to the provision of water in the Fontainebleau-Barbeau temperate oak forest over two years, including the 2018 record drought. Deep water provision was key to sustain canopy transpiration during drought, with layers below 150 cm contributing up to 60% of the transpired water in August 2018, despite their very low density of fine roots. We further showed that soil databases used to parameterize ecosystem models largely underestimated the amount of water extractable from the soil by trees, due to a considerable underestimation of the tree rooting depth. The consensus database established for France gave an estimate of 207 mm for the soil water holding capacity (SWHC) at Fontainebleau-Barbeau, when our estimate based on the analysis of soil water content measurements was 1.9 times as high, reaching 390±17 mm. Running the CASTANEA forest model with the database-derived SWHC yielded a 350 gC m−2 y−1 average underestimation of annual gross primary productivity under current climate, reaching up to 700 gC m−2 y−1 under climate change scenario RCP8.5. It is likely that the strong underestimation of SWHC that we show at our site is not a special case, and concerns a large number of forest sites. Thus, we argue for a generalisation of deep soil water content measurements in forests, in order to improve the estimation of SWHC and the simulation of the forest carbon cycle in the current context of climate change.HighlightsForest-atmosphere carbon exchanges remained insensitive to record drought.Deep soil (150-300 cm) provisioned up to 60% of the water transpired by the forest during drought.Soil databases were underestimating soil water holding capacity by a factor of two.Simulated forest productivity is strongly sensitive to soil water holding capacity parameter.Deep soil water content measurements are urgently needed to correctly estimate the soil water holding capacity.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3