Gut microbiota transplantation drives the adoptive transfer of colonic genotype-phenotype characteristics between mice lacking catestatin and their wild type counterparts

Author:

González-Dávila Pamela,Schwalbe Markus,Danewalia Arpit,Wardenaar René,Dalile Boushra,Verbeke Kristin,Mahata Sushil K,Aidy Sahar El

Abstract

AbstractThe gut microbiota is in continuous interaction with the intestinal mucosa via metabolic, neuro- immunological, and neuroendocrine pathways. Disruption in levels of antimicrobial peptides produced by the enteroendocrine cells, such as catestatin, has been associated with changes in the gut microbiota and imbalance in intestinal homeostasis. However, whether the changes in the gut microbiota have a causational role in intestinal dyshomeostasis has remained elusive. To this end, we performed reciprocal fecal microbial transplantation in wild-type mice and mice with a knockout in the catestatin coding region of the chromogranin-A gene (CST-KO mice). Combined microbiota phylogenetic profiling, RNA sequencing, and transmission electron microscopy were employed. Fecal microbiota transplantation from mice deficient in catestatin (CST-KO) to microbiota-depleted wild-type mice induced transcriptional and physiological features characteristic of a distorted colon in the recipient animals, including impairment in tight junctions, as well as an increased collagen area fraction indicating colonic fibrosis. In contrast, fecal microbiota transplantation from wild-type mice to microbiota-depleted CST-KO mice reduced collagen fibrotic area, restored disrupted tight junction morphology, and altered fatty acid metabolism in recipient CST-KO mice. This study provides a comprehensive overview of the murine metabolic- and immune-related cellular pathways and processes that are co-mediated by the fecal microbiota transplantation and supports a prominent role for the gut microbiota in the colonic distortion associated with the lack of catestatin in mice. Overall, the data show that the gut microbiota may play a causal role in the development of features of intestinal inflammation and metabolic disorders, known to be associated with altered levels of catestatin and may, thus, provide a tractable target in the treatment and prevention of these disorders.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3