Distinct physiological responses of Coccolithus braarudii life cycle phases to light intensity and nutrient availability

Author:

Langer Gerald,Jie Vun WenORCID,Kottmeier DorotheeORCID,Flori SerenaORCID,Sturm DanielaORCID,de Vries JoostORCID,Harper Glenn M.,Brownlee Colin,Wheeler GlenORCID

Abstract

AbstractCoccolithophores feature a haplo-diplontic life cycle comprised of diploid cells producing heterococcoliths and haploid cells producing morphologically different holococcoliths. These life cycle phases of each species appear to have distinct spatial and temporal distributions in the oceans, with the heavily-calcified heterococcolithophores (HET) often more prevalent in winter and at greater depths, whilst the lightly-calcified holococcolithophores (HOL) are more abundant in summer and in shallower waters. The haplo-diplontic life cycle may therefore allow coccolithophores to expand their ecological niche, switching between life cycle phases to exploit conditions that are more favourable. However, coccolithophore life cycles remain poorly understood and fundamental information on the physiological differences between life cycle phases is required if we are to better understand the ecophysiology of coccolithophores. In this study, we have examined the physiology of HET and HOL phases of the coccolithophore Coccolithus braarudii in response to changes in light and nutrient availability. We found that the HOL phase was more tolerant to high light than the HET phase, which exhibited defects in calcification at high irradiances. The HET phase exhibited defects in coccolith formation under both nitrate (N) and phosphate (P) limitation, whilst no defects in calcification were detected in the HOL phase. The HOL phase grew to a higher cell density under P-limitation than N-limitation, whereas no difference was observed in the maximum cell density reached by the HET phase at these nutrient concentrations. HET cells grown under a light:dark cycle divided primarily in the dark and early part of the light phase, whereas HOL cells continued to divide throughout the 24 h period. The physiological differences may contribute to the distinct biogeographical distributions observed between life cycle phases, with the HOL phase potentially better adapted to high light, low nutrient regimes, such as those found in seasonally stratified surface waters.HighlightsCoccolithus braarudii life cycle phases exhibit different physiological responses.The heavily-calcified heterococcolithophores (HET) life cycle phase is more sensitive to high light.The lightly-calcified holococcolithophores (HOL) life cycle phase may be better suited to growth under low phosphate availability.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3