Test-retest reproducibility of human brain multi-slice 1H FID-MRSI data at 9.4 T after optimization of lipid regularization, macromolecular model and spline baseline stiffness

Author:

Ziegs TheresiaORCID,Wright Andrew MartinORCID,Henning AnkeORCID

Abstract

AbstractPurposeThis study analyzes the effects of retrospective lipid suppression, a simulated macromolecular prior knowledge and different spline baseline stiffness values on 9.4 T multi-slice proton FID-MRSI data spanning the whole cerebrum of human brain and its reproducibility of metabolite ratio (/tCr) maps for 10 brain metabolites.MethodsMeasurements were performed twice on five volunteers using a non-accelerated FID MRSI 2D sequence at 9.4 T. The effects of retrospective lipid L2-regularization, macromolecular spectrum and different LCModel baseline flexibilities on SNR, FWHM, fitting residual, CRLB and the concentration ratio maps were investigated. Intra-subject, inter-session coefficient of variation of the mean metabolite ratios (/tCr) of each slice was calculated.ResultsL2-regularization provided effective suppression of lipid-artifacts, but should be avoided if no artifacts are detected. Transversal, sagittal and coronal of many metabolite ratio maps correspond to anatomically expected concentration relations in gray and white matter for the majority of the cerebrum when using a flexible baseline in LCModel fit. Additionally, results from the second measurements of the same subjects show that slice positioning and data quality correlate significantly to the first measurement.ConclusionConcentration ratio maps (/tCr) for 4 metabolites (tCho, NAA, Glu, mI) spanning the majority and six metabolites (NAAG, GABA, GSH, Tau, Gln, Asp) covering 32 mm in the upper part of the brain were acquired at 9.4 T using multi-slice FID MRSI with retrospective lipid suppression, a macromolecular spectrum and a flexible LCModel baseline.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3