Photo-Electrochemical Stimulation of Neurons with Organic Donor-Acceptor Heterojunctions

Author:

Savva AchilleasORCID,Hama AdelORCID,Herrera-López Gabriel,Gasparini NicolaORCID,Migliaccio LudovicoORCID,Kawan Malak,Steiner Nadia,McCulloch IainORCID,Baran DeryaORCID,Fiumelli Hubert,Magistretti PierreORCID,Głowacki Eric D.ORCID,Inal SahikaORCID

Abstract

AbstractRecent advancements in light-responsive materials enabled the development of devices to artificially activate tissue with light, and show great potential for use in different types of therapy. Photo-stimulation based on organic semiconductors has recently attracted interest due to their unique set of properties such as biocompatibility, better mechanical match with human tissue, and strong absorption of light in the visible spectrum. Here we show the development of solution processed organic heterojunctions that are able to control the activity of primary neurons in vitro with light. The p-type polymer semiconductor PDCBT and the n-type polymer semiconductor ITIC (also known as non-fullerene acceptor) are simply spin coated on glass substrates forming a bilayer p-n junction with high photo-sensitivity in aqueous electrolytes. Photo-electrochemical measurements reveal that high photo-voltage and photo-current is produced, as a result of a charge transfer between the polymers and oxygen in the electrolyte. The biocompatibility of the proposed materials is addressed with live/dead assays on both primary mouse cortical neurons and human cell lines that are cultured on their surface. We have found that light of low intensity (i.e. 40 mW/cm2) is absorbed, and converted into a cue that triggers action potential on primary cortical neurons directly cultured on glass/PDCBT/ITIC interfaces as proven by patch clamp measurements. The activation of neurons is most likely due to photochemical reactions at the polymer/electrolyte interface that result in hydrogen peroxide, which might lead to modulation of specific ion channels on neurons membrane. Photo-thermal effects are excluded with controlled patch clamp measurements on neurons cultured on plain glass and on photoresist thin films. The profound advantages of low intensity light stimulation, simplified fabrication, and wireless operation pave the way for the integration of these interfaces in multiplex bioelectronic devices for the development of novel light therapy concepts and powerful neuroscience research tools.

Publisher

Cold Spring Harbor Laboratory

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3