Fly-casting with ligand–sliding and orientational selection to support the complex formation of a GPCR and a middle-sized flexible molecule

Author:

Higo Junichi,Kasahara Kota,Bekker Gert-Jan,Ma Benson,Sakuraba ShunORCID,Iida Shinji,Kamiya Narutoshi,Fukuda Ikuo,Kono Hidetoshi,Fukunishi Yoshifumi,Nakamura Haruki

Abstract

AbstractTo elucidate computationally a binding mechanism of a middle-sized flexible molecule, bosentan, to a GPCR protein, human endothelin receptor type B (hETB), a GA-guided multidimensional virtual-system coupled molecular dynamics (GA-mD-VcMD) simulation was performed. This method is one of generalized ensemble methods and produces a free-energy landscape of the ligand-receptor binding by searching large-scale motions accompanied with stably keeping the fragile cell-membrane structure. All molecular components (bosentan, hETB, membrane, and solvent) were represented with an all-atom model, and sampling was carried out from conformations where bosentan was distant from the binding site in the hETB’s binding pocket. The deepest basin in the resultant free-energy landscape was assigned to the native-like complex conformation. The obtained binding mechanism is as follows. First, bosentan fluctuating randomly in solution is captured by a tip region of the flexible N-terminal tail of hETB via nonspecific attractive interactions (fly-casting). Bosentan then occasionally slides from the tip to root of the N-terminal tail (ligand–sliding). In this sliding, bosentan passes the gate of the binding pocket from outside to inside of the pocket with accompanying a quick reduction of the molecular orientational variety of bosentan (orientational selection). Last, in the pocket, ligand–receptor attractive native contacts are formed, and eventually the native-like complex is completed. The bosentan-captured conformations by the tip- and root-regions of the N-terminal tail correspond to two basins in the free-energy landscape, and the ligand–sliding corresponds to overcoming a free-energy barrier between the basins.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3