Abstract
ABSTRACTDeep vein thrombosis (DVT) is a potentially deadly medical condition that is costly to treat and impacts thousands of Americans every year. DVT is characterized by the formation of blood clots within the deep venous system of the body. If a DVT dislodges it can lead to venous thromboembolism (VTE) and pulmonary embolism (PE), both of which can lead to significant morbidity or death. Current treatment options for DVT are limited in both effectiveness and safety, in part because the treatment of the DVT cannot be confined to a defined sequestered treatment zone. We therefore developed and tested a thrombectomy device that enables the sequesteration of a DVT to a defined treatment zone during fragmentation and evacuation. We observed that, compared to a predicate thrombectomy device, the sequestered approach reduced distal DVT embolization during ex vivo thrombectomy. The sequestered approach also facilitated isovolumetric infusion and suction that enabled clearance of the sequestered treatment zone without significantly impacting vein wall diameter. Results suggest that our novel device using sequestered therapy holds promise for the treatment of high risk large-volume DVTs.
Publisher
Cold Spring Harbor Laboratory