Genome-microbiome interplay provides insight into the determinants of the human blood metabolome

Author:

Diener ChristianORCID,Dai Chengzhen L.ORCID,Wilmanski TomaszORCID,Baloni PriyankaORCID,Smith Brett,Rappaport NoaORCID,Hood LeroyORCID,Magis Andrew T.ORCID,Gibbons Sean M.ORCID

Abstract

AbstractVariation in the blood metabolome is intimately related to human health. Prior work has shown that host genetics and gut microbiome composition, combined, explain sizable, but orthogonal, components of the overall variance in blood metabolomic profiles. However, few details are known about the interplay between genetics and the microbiome in explaining variation on a metabolite-by-metabolite level. Here, we performed analyses of variance for each of the 945 blood metabolites that were robustly detected across a cohort of 2,049 individuals, while controlling for a number of relevant covariates, like sex, age, and genetic ancestry. Over 60% of the detected blood metabolites were significantly associated with either host genetics or the gut microbiome, with more than half of these associations driven solely by the microbiome and around 30% under hybrid genetic-microbiome control. The variances explained by genetics and the microbiome for each metabolite were indeed largely additive, although subtle, but significant, non-additivity was detected. We found that interaction effects, where a metabolitemicrobe association was specific to a particular genetic background, were quite common, albeit with modest effect sizes. The outputs of our integrated genetic-microbiome regression models provide novel biological insights into the processes governing the composition of the blood metabolome. For example, we found that unconjugated secondary bile acids were solely associated with the microbiome, while their conjugated forms were under strong host genetic control. Overall, our results reveal which components of the blood metabolome are under strong genetic control, which are more dependent on gut microbiome composition, and which are dependent upon both. This knowledge will help to guide targeted interventions designed to alter the composition of the blood metabolome.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3