SARS-CoV-2 variant of concern type and biological sex affect efficacy of molnupiravir in dwarf hamster model of severe COVID-19

Author:

Lieber Carolin M.,Cox Robert M,Sourimant Julien,Wolf Josef D.,Juergens Kate,Phung Quynh,Saindane Manohar T,Natchus Michael G,Painter George R,Sakamoto Kaori,Greninger Alexander L.ORCID,Plemper Richard K

Abstract

Summary ParagraphSARS-CoV-2 variants of concern (VOC) have triggered distinct infection waves in the coronavirus disease 2019 (COVID-19) pandemic, culminating in currently all-time high incidence rates of VOC omicron. Orally available direct-acting antivirals such as molnupiravir promise to improve disease management and limit SARS-CoV-2 spread. However, molnupiravir efficacy against VOC delta was questioned based on clinical trial results and its potency against omicron is unknown. This study evaluates molnupiravir against a panel of relevant VOC in three efficacy models: primary human airway epithelium organoids, the ferret model of upper respiratory disease, and a lethal Roborovski dwarf hamster efficacy model of severe COVID-19-like acute lung injury. All VOC were equally efficiently inhibited by molnupiravir in cultured cells and organoids. Treatment consistently reduced upper respiratory VOC shedding in ferrets and prevented viral transmission. Pathogenicity in the dwarf hamsters was VOC-dependent and highest for gamma, omicron, and delta with fulminant lung histopathology. Oral molnupiravir started 12 hours after infection resulted in complete survival of treated dwarf hamsters independent of challenge VOC. However, reduction in lung virus differed VOC-dependently, ranging from one (delta) to four (gamma) orders of magnitude compared to vehicle-treated animals. Dwarf hamsters infected with VOC omicron showed significant individual variation in response to treatment. Virus load reduction was significant in treated males, but not females. The dwarf hamster model recapitulates mixed efficacy of molnupiravir seen in human trials and alerts that therapeutic benefit of approved antivirals must be continuously reassessed in vivo as new VOC emerge.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3