Multi-pulse transcranial magnetic stimulation of human motor cortex produces short-latency corticomotor facilitation via two distinct mechanisms

Author:

Kesselheim JanineORCID,Takemi MitsuakiORCID,Christiansen Lasse,Karabanov Anke NinijaORCID,Siebner Hartwig RomanORCID

Abstract

AbstractBackgroundSingle-pulse transcranial magnetic stimulation of the precentral hand representation (M1HAND) can elicit indirect waves in the corticospinal tract at a periodicity of ~660 Hz, called indirect or I-waves. These synchronized descending volleys are produced by transsynaptic excitation of fastconducting monosynaptic corticospinal axons in M1-HAND. Paired-pulse TMS can induce short-interval intracortical facilitation (SICF) of motor evoked potentials (MEPs) at inter-pulse intervals that match I-wave periodicity.ObjectiveTo examine whether short-latency corticospinal facilitation engages additional mechanisms independently of I-wave periodicity.MethodsIn 19 volunteers, one to four biphasic TMS pulses were applied to left M1-HAND with interpulse interval was adjusted to the first peak or first trough of the individual SICF curve. TMS was applied at different intensities to probe the intensity-response relationship.ResultsPairs, triplets, or quadruplets at individual peak-latency facilitated MEP amplitudes across a wide range of TMS intensities compared to single pulses. Multi-pulse TMSHAND at individual troughlatency also produced a consistent facilitation of MEP amplitude. Short-latency facilitation at trough-latency was less pronounced than short-latency facilitation at peak-latency, but the relative difference in facilitation decreased with increasing stimulus intensity. Increasing the number of pulses from two to four pulses had only a modest effect on MEP facilitation.ConclusionTwo mechanisms underly short-latency corticomotor facilitation caused by biphasic multi-pulse TMS. An intracortical mechanism is related to I-wave periodicity and engages fast-conducting direct projections to spinal motoneurons. A second corticospinal mechanism does not rely on I-wave rhythmicity and may be mediated by slower conducting indirect pyramidal tract projections from M1-HAND to spinal interneurons. The latter mechanism deserves more attention in TMS studies of the corticomotor system.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3