Translational reprogramming in response to accumulating stressors ensures critical threshold levels of Hsp90 for mammalian life

Author:

Bhattacharya Kaushik,Maiti Samarpan,Zahoran Szabolcs,Weidenauer Lorenz,Hany Dina,Wider Diana,Bernasconi Lilia,Quadroni Manfredo,Collart Martine,Picard DidierORCID

Abstract

AbstractThe cytosolic molecular chaperone Hsp90 is essential for eukaryotic life1, 2. It is involved in multiple branches of proteostasis2, 3, and as a molecular capacitor in morphological evolution4. Although reduced Hsp90 levels cause phenotypic variations5, 6 and correlate with aging7, whether eukaryotic cells and organisms can tune the basal Hsp90 protein levels to alleviate physiologically accumulated stress is unknown. To begin to explore this question, we investigated whether and how mice adapt to the deletion of three out of four alleles encoding cytosolic Hsp90, one Hsp90β allele being the only remaining one. While the vast majority of such mouse embryos die during gestation, survivors apparently manage to increase their Hsp90β protein to at least wild-type levels. Further mechanistic studies revealed an internal ribosome entry site in the 5’UTR of the Hsp90β mRNA allowing translational reprogramming to compensate for the genetic loss of Hsp90 alleles and in response to stress. We found that the minimum amount of total Hsp90 that is required to support viability of mammalian cells and organisms is 50-70% of what is normally there. Those that fail to maintain a threshold level are subject to accelerated senescence, proteostatic collapse, and ultimately death. Therefore, considering that Hsp90 levels can be reduced ≥100-fold in the unicellular budding yeast, critical threshold levels of Hsp90 have been markedly increased during eukaryotic evolution. The incompressible part of the steady-state levels of Hsp90 may have increased to accommodate the ever-growing complexity of the proteome8 on the path towards mammals.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3