FiNN: A toolbox for neurophysiological network analysis

Author:

Scherer MaximilianORCID,Wang Tianlu,Guggenberger Robert,Milosevic Luka,Gharabaghi Alireza

Abstract

AbstractRecently, neuroscience has seen a shift from localist approaches to network-wide investigations of brain function. Neurophysiological signals across different spatial and temporal scales provide insight into neural communication. However, additional methodological considerations arise when investigating network-wide brain dynamics rather than local effects. Specifically, larger amounts of data, investigated across a higher dimensional space, are necessary.Here, we present FiNN (Find Neurophysiological Networks), a novel toolbox for the analysis of neurophysiological data with a focus on functional and effective connectivity. FiNN provides a wide range of data processing methods, and statistical and visualization tools to facilitate inspection of connectivity estimates and the resulting metrics of brain dynamics. The Python toolbox (https://github.com/neurophysiological-analysis/FiNN) and its documentation (https://neurophysiological-analysis.github.io/FiNN/) are freely available.We evaluated FiNN against a number of established frameworks on both a conceptual and an implementation level. We found FiNN to require much less processing time and memory than other toolboxes. In addition, FiNN adheres to a design philosophy of easy access and modifiability, while providing efficient data processing implementations. Since the investigation of network-level neural dynamics is experiencing increasing interest, we place FiNN at the disposal of the neuroscientific community as open-source software.

Publisher

Cold Spring Harbor Laboratory

Reference63 articles.

1. PyEEG: An Open Source Python Module for EEG/MEG Feature Extraction;Computational Intelligence and Neuroscience,2011

2. Fitting Linear Mixed-Effects Models Using lme4;Journal of Statistical Software,2015

3. Bates, D. , & Maechler, M. (2021). Matrix: Sparse and Dense Matrix Classes and Methods. https://CRAN.R-project.org/package=Matrix

4. Billinger, M. , Brunner, C. , & Müller-Putz, G. R. (2014). SCoT: A Python toolbox for EEG source connectivity. Frontiers in Neuroinformatics, 8. https://doi.org/10.3389/fninf.2014.00022

5. Large-scale brain networks in cognition: emerging methods and principles

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3