The ABA INSENSITIVE (ABI) 4 transcription factor is stabilized by stress, ABA and phosphorylation

Author:

Maymon Tzofia,Eisner Nadav,Bar-Zvi DudyORCID

Abstract

SUMMARYThe Arabidopsis transcription factor ABSCISIC ACID INSENSITIVE 4 (ABI4) is a key player in the plant hormone abscisic acid (ABA) signaling pathway. ABI4 is also involved in seed development and germination, the response to abiotic stresses such as drought and salinity, control of lipid reserve mobilization in the embryo, lateral root formation, and redox control. Expression of the ABI4 gene is tightly regulated and basal expression is low. Maximal transcript levels occur during seed maturation and in the early stages of seed germination and are markedly reduced in other developmental stages. ABI4 is an unstable lowly expressed protein, resulting from tight post-transcriptional regulation. Here, we studied factors affecting the stability of the ABI4 protein using transgenic Arabidopsis plants expressing 35S::HA-FLAG-ABI4-eGFP. Despite the expression of eGFP-tagged ABI4 being driven by the highly active 35S CaMV promoter the steady-state levels of ABI4 were extremely low in the roots of seedling grown in optimal conditions. These levels were markedly enhanced upon exposure of the seedlings to abiotic stress and ABA. ABI4 is degraded rapidly by the 26S proteasome and we report on the role of phosphorylation of ABI4-serine 114 in regulating ABI4 stability. Our results indicate that ABI4 is tightly regulated both post-transcriptionally and post-translationally. Moreover, abiotic factors and plant hormones have similar effects on ABI4 transcripts and ABI4 protein levels. This double-check mechanism for controlling ABI4 reflects on its central role in plant development and cellular metabolism.SIGNIFICANCE STATEMENTWe show that stabilization of the ABI4 transcription factor by stress and hormones is mediated by phosphorylation of Serine 114 by MAP kinases. Transcription of ABI4 is also modulated by MAP kinases, suggesting that the same signals affect both transcript and protein levels, resulting in tight modulation of ABI4 activity.

Publisher

Cold Spring Harbor Laboratory

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3