Not all roads lead to the immune system: The Genetic Basis of Multiple Sclerosis Severity Implicates Central Nervous System and Mitochondrial Involvement

Author:

Jokubaitis Vilija G.ORCID,Ibrahim OmarORCID,Stankovich JimORCID,Kleinova PavlinaORCID,Matesanz Fuencisla,Hui Daniel,Eichau Sara,Slee MarkORCID,Lechner-Scott JeannetteORCID,Lea RodneyORCID,Kilpatrick Trevor JORCID,Kalincik TomasORCID,De Jager Philip L.ORCID,Beecham AshleyORCID,McCauley Jacob L.ORCID,Taylor Bruce V.,Vucic Steve,Laverick Louise,Vodehnalova KarolinaORCID,García-Sanchéz Maria-Isabel,Alcina Antonio,van der Walt AnnekeORCID,Havrdova Eva KubalaORCID,Izquierdo GuillermoORCID,Patsopoulos Nikolaos,Horakova DanaORCID,Butzkueven HelmutORCID

Abstract

AbstractMultiple sclerosis (MS) is a leading cause of neurological disability in adults. Heterogeneity in MS clinical presentation has posed a major challenge for identifying genetic variants associated with disease outcomes. To overcome this challenge, we used prospectively ascertained clinical outcomes data from the largest international MS Registry, MSBase. We assembled a cohort of deeply phenotyped individuals with relapse-onset MS. We used unbiased genome-wide association study and machine learning approaches to assess the genetic contribution to longitudinally defined MS severity phenotypes in 1,813 individuals. Our results did not identify any variants of moderate to large effect sizes that met genome-wide significance thresholds. However, we demonstrate that clinical outcomes in relapse-onset MS are associated with multiple genetic loci of small effect sizes. Using a machine learning approach incorporating over 62,000 variants and demographic variables available at MS disease onset, we could predict severity with an area under the receiver operator curve (AUROC) of 0.87 (95% CI 0.83 – 0.91). This approach, if externally validated, could quickly prove useful for clinical stratification at MS onset. Further, we find evidence to support central nervous system and mitochondrial involvement in determining MS severity.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3