Abstract
AbstractWhen learning new movements some people make larger kinematic errors than others, interpreted as a reduction in motor-learning ability. Consider a learning task where error-cancelling strategies incur higher effort costs, specifically where subjects reach to targets in a force field. Concluding that those with greater error have learned less has a critical assumption: everyone uses the same error-canceling strategy. Alternatively, it could be that those with greater error may be choosing to sacrifice error reduction in favor of a lower effort movement. Here, we test this hypothesis in a dataset that includes both younger and older adults, where older adults exhibited greater kinematic errors. Utilizing the framework of optimal control theory, we infer subjective costs (i.e., strategies) and internal model accuracy (i.e., proportion of the novel dynamics learned) by fitting a model to each population’s trajectory data. Our results demonstrate trajectories are defined by a combination of the amount learned and strategic differences represented by relative cost weights. Based on the model fits, younger adults could have learned between 65-90% of the novel dynamics. Critically, older adults could have learned between 60-85%. Each model fit produces trajectories that match the experimentally observed data, where a lower proportion learned in the model is compensated for by increasing costs on kinematic errors relative to effort. This suggests older and younger adults could be learning to the same extent, but older adults have a higher relative cost on effort compared to younger adults. These results call into question the proposition that older adults learn less than younger adults and provide a potential explanation for the equivocal findings in the literature. Importantly, our findings suggest that the metrics commonly used to probe motor learning paint an incomplete picture, and that to accurately quantify the learning process the subjective costs of movements should be considered.Author SummaryHere we show that how a person values effort versus error in their movements has an impact on their overall strategy for performing those movements and adapting to a novel environment. When error alone is considered as a measure of learning, it appears that certain populations such as older adults are significantly worse at learning new motor tasks. However, using an optimal control framework, we are able to parse out differences in how much a population or person has learned, as well as how they subjectively value factors such as effort and error. In the case of older adults, we show that they could be learning as much as younger adults but exhibit larger errors because they care more about expending extra effort to reduce them.
Publisher
Cold Spring Harbor Laboratory